
Gallant: Voxel Grid-based Humanoid Locomotion and
Local-navigation across 3D Constrained Terrains

Qingwei Ben∗,2,1, Botian Xu∗,2, Kailin Li∗,1, Feiyu Jia1,3,
Wentao Zhang4,1, Jingping Wang1,5, Jingbo Wang1, Dahua Lin2,1, Jiangmiao Pang⊕,1

1Shanghai Artificial Intelligence Laboratory, 2The Chinese University of Hong Kong,
3University of Science and Technology of China , 4Tykyo University, 5Shanghai Jiaotong University

∗Equal Contribution, ⊕Corresponding Author

（a）（b）

（c）（d）

Figure 1. Overview. Gallant enables a single policy with voxel grids to traverse diverse 3D constrained terrains: (a) ascend and descend
stairs, (b) pass doors and duck under ceilings, (c) step onto platforms and over gaps, and (d) cross stepping-stone pillars.

Abstract

Robust humanoid locomotion requires accurate and glob-
ally consistent perception of the surrounding 3D environ-
ment. However, existing perception modules, mainly based
on depth images or elevation maps, offer only partial and
locally flattened views of the environment, failing to cap-
ture the full 3D structure. This paper presents Gallant, a
voxel-grid–based framework for humanoid locomotion and
local navigation in 3D constrained terrains. It leverages
voxelized LiDAR data as a lightweight and structured per-
ceptual representation, and employs a z-grouped 2D CNN
to map this representation to the control policy, enabling

fully end-to-end optimization. A high-fidelity LiDAR simu-
lation that dynamically generates realistic observations is
developed to support scalable, LiDAR-based training and
ensure sim-to-real consistency. Experimental results show
that Gallant’s broader perceptual coverage facilitates the
use of a single policy that goes beyond the limitations of pre-
vious methods confined to ground-level obstacles, extending
to lateral clutter, overhead constraints, multi-level struc-
tures, and narrow passages. Gallant also firstly achieves
near-100% success rates in challenging scenarios such as
stair climbing and stepping onto elevated platforms through
improved end-to-end optimization. Website: Gallant.

1

https://www.qingweiben.com

1. Introduction
Robust humanoid locomotion in unstructured 3D envi-
ronments demands accurate and globally consistent per-
ception of surrounding geometry. While recent systems
have progressed from lab prototypes to real-world deploy-
ment [17, 23, 36], ensuring operational safety remains a key
challenge. Robots must not only traverse level surfaces,
but also navigate terrain irregularities, ground-level obsta-
cles, lateral clutter, and overhead constraints. This requires
a perception architecture that enables anticipatory collision
checking, clearance-aware motion generation, and planning
of contact-rich maneuvers.

Existing perception modules, such as those based on
depth images or elevation maps, provide only partial and
locally flattened views of the environment, limiting the
robot’s understanding of complex 3D structures. Depth
cameras[34, 49] offer lower-latency perception; however,
their narrow field of view (FoV) and limited range im-
pede reasoning about complex, spatially extended environ-
ments. In contrast, 3D LiDAR provides detailed scene ge-
ometry with a wide FoV, but its raw point clouds are sparse
and noisy, which bottlenecks sample-efficient policy learn-
ing and real-time inference. Elevation-mapping approaches
compress full 3D LiDAR point clouds into 2.5D height
fields[2, 13, 21, 30, 38], yielding a bird’s-eye height esti-
mate for each ground-plane cell [10, 11]. This projection
discards vertical and multilayer structure (e.g., overhangs,
low ceilings, mezzanines, stair undersides), and the recon-
struction stage can introduce algorithm-specific distortions
and latency, further decoupling perception from control.

To address these limitations, we introduce Gallant,
a voxel-grid–based perception-learning framework for
humanoid locomotion and loco-navigation across 3D
constrained terrains. Gallant uses a robot-centric voxel
grid derived from LiDAR point clouds as its perception
representation, preserving multi-layer scene structure over
a large FoV while aggregating raw points into voxels
to reduce dimensionality and smooth noise, yielding a
lightweight tensor amenable to efficient learning. A z-
grouped 2D convolutional neural network (CNN) treats
height slices as channels, exploiting sparsity to produce
compact features with a favorable accuracy–compute trade-
off compared to heavier 3D CNNs [12, 25, 37]. These fea-
tures are fused with proprioceptive signals and passed to a
multi-layer perceptron (MLP)-based actor for whole-body
control, directly conditioning actions on 3D structural cues.
To scale training and narrow the simulation-to-reality (sim-
to-real) gap, we develop a LiDAR simulation pipeline that
models sensor noise and latency and enables realistic scan-
ning of dynamic objects, including the robot’s own mov-
ing links, thereby aligning synthetic data with deployment
conditions. We further construct eight representative terrain
families spanning ground-level obstacles, lateral clutter, and

overhead constraints, encouraging the policy to internalize
structural regularities critical for generalization.

Experimental results show that Gallant enables a single
end-to-end policy that generalizes from simulation to di-
verse real-world environments, handling not only ground-
level obstacles but also lateral clutter and overhead con-
straints—capabilities that were previously beyond the reach
of existing methods. Gallant achieves near-100% success
in challenging tasks such as stair climbing and platform
stepping, while significantly improving robustness over
elevation-based baselines. Experiments also highlight the
importance of our high-fidelity LiDAR simulation, which
dynamically generates realistic observations essential for
scalable, LiDAR-based training. Ablation results further
demonstrate the efficiency of the z-grouped 2D CNN, which
attains superior performance and lower inference latency
compared to 3D CNNs, making it well-suited for real-time
humanoid deployment. These results establish Gallant as a
practical, full-stack solution—from realistic LiDAR simu-
lation to robust control—for full-space perceptive locomo-
tion and local-navigation in 3D constrained environments.
Our contribution lies in the following aspects:

1. We propose voxel grid as a lightweight yet geometry-
preserving representation for humanoid locomotion and
loco-navigation [31] in 3D-constrained environments.

2. We verify that z-grouped 2D CNN effectively processes
voxel grids, offering a favorable trade-off between rep-
resentation capacity and computational efficiency.

3. We develop a full-stack pipeline from sensor simulation
to policy training, achieving a single policy that general-
izes across diverse 3D-constrained terrains in real.

2. Related Work

Table 1. Comparison between gallant and previous methods. FoV
in Solid Angles are computed by parameter of the used sensors.

Method
Perceptual

Representation Fov Ground Lateral Overheading

Long et al. [21] Elevation Map ∼ 1.97π ! % %

Wang et al. [38] Elevation Map ∼ 1.97π ! % %

Ren et al. [30] Elevation Map ∼ 1.97π ! ! %

Zhuang et al. [49] Depth Image ∼ 0.43π ! % %

Wang et al. [39] Point Cloud ∼ 1.97π % ! !

Gallant (ours) Voxel Grid ∼ 4.00π ! ! !

Humanoid Perceptive Locomotion. Humanoid per-
ceptive locomotion uses onboard sensing to traverse con-
strained terrains. Prior work mainly relies on elevation
maps [21, 26, 30, 35, 38], trained with ground-truth height
fields and deployed via LiDAR reconstruction [10, 11].
While effective for ground-level reasoning, elevation maps
flatten the scene and ignore lateral or overhead structures,

2

and introduce reconstruction latency. Alternatively, depth
cameras offer higher update rates and are proved to be ef-
fective on quadruped robots [1, 7, 18, 22, 34, 48, 49],
but their narrow field of view and limited spatial conti-
nuity similarly restrict 3D understanding, hindering pol-
icy generalization in diverse environments. Recent LiDAR
simulation advances enable realistic sensing during train-
ing. While point-cloud–based inputs [15, 39] address prior
limitations, their high processing cost makes real-time on-
board use infeasible. Voxel grids offer a structured, ef-
ficient alternative [12, 27]. They have been explored for
cross-modal perception for scene-understanding on legged
robots [9, 33, 47], but remain unused in humanoid loco-
motion as a direct way of perception. To this end, Gal-
lant introduces a LiDAR perception framework tailored for
scalable simulation and real-time deployment, using voxel
grids to support a single policy capable of zero-shot sim-to-
real transfer and full 3D obstacle handling. A comparison
of Gallant with prior methods in perceptual representation,
FoV, and supported obstacle types is listed in Tab. 1.

Local Navigation. Local navigation enables legged
robots to reach targets in cluttered, constrained environ-
ments while minimizing incidental contact. Most sys-
tems adopt a hierarchical design: a high-level planner out-
puts velocity commands, and a low-level policy tracks
them [4, 6, 12, 15, 20, 29, 40, 45, 46]. This decoupling
limits the policy’s ability to exploit terrain, and tracking er-
rors—combined with slow high-level updates, further de-
grading performance. Recent work explores end-to-end
training by adding obstacle-avoidance rewards to velocity
tracking [30], but this creates conflicting objectives. Us-
ing target positions instead allows the policy to reason over
terrain and choose appropriate actions [14, 31, 44], though
this remains untested on humanoids. Gallant adopts this
position-based formulation to fuse local navigation and lo-
comotion into one single policy.

3. Method
We introduce Gallant, a voxel-grid–based perceptive learn-
ing framework for humanoid locomotion and local navi-
gation [31] in 3D constrained environments. As shown in
Fig. 2, the system comprises: (i) a parallelized LiDAR sim-
ulation pipeline (Sec. 3.2), (ii) a lightweight 2D CNN per-
ception module tailored to sparse voxel grids (Sec. 3.3), and
(iii) a set of representative terrain families for curriculum
training (Sec. 4.1). Together, these components form a full-
stack pipeline—from data generation to perception to con-
trol—that trains a single policy to robustly traverse all-space
obstacles and deploy zero-shot on real hardware.

3.1. Problem Formulation
We formulate humanoid perceptive locomotion as a par-
tially observable Markov decision process (POMDP) M =

(S,A,O, P,R,Ω, γ) and train an actor–critic policy using
Proximal Policy Optimization (PPO) [32]. The training en-
vironment is divided into 8m×8m blocks. At each episode,
the humanoid starts at the block center, and a goal G is sam-
pled along the perimeter, with a fixed horizon of 10 seconds
for robots to reach. The observation at time t is defined as:

ot = (Pt, Telapse,t, Tleft,t︸ ︷︷ ︸
Command

, at−4:t−1︸ ︷︷ ︸
Action history

,

ωt−5:t, gt−5:t, qt−5:t, q̇t−5:t︸ ︷︷ ︸
Proprioception

,

Voxel Gridt︸ ︷︷ ︸
Perception

, vt, Height Mapt︸ ︷︷ ︸
Privileged

),

where: Pt is the goal position relative to the robot base,
Telapse,t is the elapsed time in the episode, Tleft,t = T −
Tpass,t is the remaining time until timeout (T = 10s), at de-
notes actions output by policy, ωt and vt are the root angu-
lar and linear velocity of the robot, gt is the vector [0, 0,−1]
projected into the robot base frame, qt and q̇t are joint posi-
tions and velocities, respectively, Voxel Gridt is the vox-
elized perception input, Height Mapt is relative heights
of the scanned dots to the robot. Here, the subscript range
t − a : t − b denotes inclusion of temporal history from
time step t − a to t − b. Actor and critic share all fea-
tures except privileged inputs, which are critic-only. The
reward follows Ben et al. [3] with velocity tracking rewards
replaced by goal-reaching reward [31]:

rreach =
1

1 + ∥Pt∥2
· 1(t > T − Tr)

Tr
(Tr = 2s),

allowing time for trajectory exploration. The objective
is to maximize expected return J(π) = E[

∑H−1
t=0 γtrt].

Episodes end on fall, harsh collision, or timeout. Network
and reward details are listed in Appendix.

3.2. Efficient LiDAR Simulation
Most GPU-based simulators, such as IsaacGym and Isaac-
Sim, either lack native support for efficient LiDAR simula-
tion or are limited to scanning a single static mesh. How-
ever, realistic simulation in dynamic environments requires
accounting for all relevant geometry, including both static
and dynamic meshes—especially bodies of robots. To ad-
dress this, we implement a lightweight, efficient raycast-
voxelization pipeline using NVIDIA Warp [24]. Traditional
raycasting builds a Bounding Volume Hierarchy (BVH)
over scene geometry, which becomes costly if updated at
every simulation step due to dynamics. To mitigate this, we
precompute a BVH for each mesh in its local (body) frame.
During simulation, the ray origin p is transformed, and only
the rotation component is applied to the direction d, rotat-
ing the ray into the mesh’s local frame. To be specific, the

3

C

Voxel Grid

Real-world

Simulation

(a) Get Voxel Grid in Sim & Real (b) Projection for 2D CNN

10HZ

Point Cloud

10HZ

Z-slice

Te
rr

ai
n

ty
pe

Level up

Latency
NoiseAdd

Align
∆= 𝟎. 𝟎𝟓𝒎

BEV (𝑣, 𝑢)

Latent

…

W ∈ ℝ!×𝑪×$×$

2D CNN

Encoded
z to C

𝑣!
𝐻𝑀_𝑡 Critic

(c) Policy

Actor

O
pt
im
iz
at
io
n

PD
Controller

50HZ

500HZ

𝒂𝒕

Joint
Torques

P"
𝑇#$%&'#,!
𝑇$#)!,!
𝑎!*+:!*-
𝜔!*.:!
𝑔!*.:!
𝑞!*.:!
𝑞̇!*.:.

D𝒊𝒎 = [𝟑𝟐, 𝟑𝟐, 𝟒𝟎]

Figure 2. Method Overview. (a) Curriculum-based training over 8 representative terrains enhances generalization. (b) Realistic voxel path
alignment achieved via efficient LiDAR simulation with domain-randomized latency and noise. (c) A 2D CNN-based perceptual module
processes voxel grid using the z-dimension as input channels, balancing efficiency and representation capability. (d) A latent-aware PPO
policy enables zero-shot sim-to-real transfer across diverse obstacles, including ground, lateral, and overhead challenges.

raycasting is performed as:

raycast(TM,p,d) = T−1raycast(M,T−1p, R−1d),

Here, T denotes the full transformation matrix, and R its
rotational component. The function returns the ray–mesh
intersection point. At each simulation step, ray–mesh
intersections are computed for every mesh M using its
transform Tt, parallelized via a Warp kernel of shape
(Nenvs, Nmeshes, Nrays). Rays are emitted from the LiDAR
origin PLiDAR in directions defined as Orayi = OLiDAR +
Orayi,offset, where Orayi,offset is the i-th ray’s direction off-
set from the LiDAR orientation. Let Pi be the hit posi-
tion of the i-th ray; the resulting point cloud is: Pt =⋃Nrays

i=1 {Pi}, which is subsequently used to construct the
voxel grid. To align simulation with real-world sensing, we
apply domain randomization: (a) LiDAR Pose: Perturbed
at episode start by P rand

LiDAR = PLiDAR + N (0, 1) (cm) and
Orand

rayi
= OLiDAR + N (0, (π

180)
2) + Orayi,offset (rad); (b) Hit

Position: P rand
i = Pi + N (0, 1) (cm); (c) Latency: Simu-

lated at 10 Hz with 100–200 ms delay; (d) Missing Grid:
Randomly mask 2% of voxels to model real-world dropout.
These augmentations reduce the sim-to-real gap and im-
prove policy transferability.

3.3. Voxel Representation and 2D CNN Perception
We convert LiDAR point clouds into a fixed-size, robot-
centric voxel grid. At each timestep, returns from two
torso-mounted LiDARs are transformed into a unified torso
frame. The perception volume is defined as a cuboid Ω =
[−0.8, 0.8]m × [−0.8, 0.8]m × [−1.0, 1.0]m, discretized
at resolution ∆ = 0.05m, yielding a 32 × 32 × 40 grid
along the x, y, and z axes respectively. Each voxel is
set to 1 if at least one LiDAR point lies inside its vol-
ume, and 0 otherwise, producing a binary occupancy ten-
sor X ∈ {0, 1}C×H×W , where C = 40 (height slices),
H = W = 32 (spatial resolution).

Due to the line-of-sight nature of LiDAR and the struc-
tured nature of typical terrains, the voxel grid is highly
sparse and locally concentrated: most (x, y) columns con-
tain only one or two occupied z-slices, and large contiguous
spatial regions may remain completely empty. Rather than
applying computationally expensive 3D convolutions over
the full volume, we treat the z-axis as the channel dimen-
sion and apply 2D convolutions over the x − y plane. This
leverages spatial context while using channel mixing to cap-
ture vertical structure, making effective use of the sparse,
localized occupancy pattern. Formally, let X ∈ RC×H×W

be the voxel input and W ∈ RO×C×k×k the weights of a
2D convolution. The output Y ∈ RO×H×W is computed:

Yo,v,u = σ

C−1∑
c=0

∑
∆v,∆u

Wo,c,∆v,∆u ·Xc,v+∆v,u+∆u + bo

 ,

where σ is a nonlinearity and bo is a bias term. Compared
to a 3D kernel of size k3, this design reduces compute and
memory cost by roughly a factor of k, while still capturing
the vertical patterns critical for locomotion. Moreover, the
2D structure enables efficient parallel training and supports
real-time inference on onboard compute.

3.4. Terrain Design
We design 8 representative terrain types to train robots in
simulation: Plane represents the easiest terrain and helps
robots learn to walk in the early stage; Ceiling with ran-
domized height and density requires reasoning about over-
head constraints and crouching; Forest, composed of ran-
domly spaced cylindrical pillars, represents sparse lateral
clutter requiring weaving behavior; Door presents narrow
gaps demanding precise lateral clearance; Platform con-
sists of high, ring-shaped structures with variable spacing
and height, requiring recognition of stepable surfaces and
inter-platform traversal; Pile introduces fine-grained sup-

4

Table 2. Parameters for generating curriculum training terrains.

Terrain Type τ Term pmin
τ pmax

τ

Ceiling Ceiling height (m) ↓ 1.30 1.00
Number of Ceiling (-) ↑ 10 40

Forest Minimum distance between trees (m) ↓ 2.0 1.0
Number of trees (-) ↑ 3 32

Door Distance between two walls (m) ↓ 2.00 1.00
Width of the doors (m) ↓ 1.60 0.80

Platform Height of the platforms (m) ↑ 0.05 0.35
Gap width between two platforms (m) ↑ 0.20 0.50

Pile Distance between two cylinders (m) ↑ 0.35 0.45
Upstair Height of each step (m) ↑ 0.00 0.20

Width of each step (m) ↓ 0.50 0.30
Downstair Height of each step (m) ↑ 0.00 0.20

Width of each step (m) ↓ 0.50 0.30

port reasoning for safe foot placement; Upstair and Down-
stair require continuous adaptation to vertical elevation.

Plane

Ceiling Door

Forest Platform Upstair

DownstairPile

Figure 3. Terrain types used to train robots in simulation(pmax
τ)

We adopt a curriculum-based training strategy where ter-
rain difficulty increases progressively. Each terrain type τ
is parameterized by a scalar difficulty s ∈ [0, 1]. Terrain
generation parameters are interpolated as:

pτ (s) = (1− s)pmin
τ + spmax

τ ,

where pmin
τ and pmax

τ denote the easiest and hardest set-
tings (see Tab. 2). In each episode, a 10s goal-reaching task
is assigned, and success results in promotion to harder set-
tings; failure leads to demotion. To support learning on Pile,
we overlay a flat surface during early training (low s), fol-
lowing [38], allowing the robot to first learn basic foothold
placement. For high s, the plane is removed, and training
continues on fully gapped terrain for true crossing behavior.

4. Experiments
4.1. Experimental Configuration
We conduct both simulation training and real-world de-
ployment on the 29-DoF Unitree G1 humanoid. Simula-
tion is performed using NVIDIA IsaacSim [28]. To ensure
voxel grids accurately capture full-space terrain geometry,
we mount two Hesai JT128 LiDARs on the robot—one on

the front chest and one on the back—each with a 95◦×360◦

field of view. This dual-sensor configuration is identi-
cally replicated in simulation to ensure consistent percep-
tion across domains. Policy training is distributed across
eight NVIDIA RTX 4090 GPUs (45GB memory each).
During deployment, both the learned policy and voxel grid
processing run entirely onboard the G1 using an NVIDIA
Orin NX. For target-relative localization, we use a Livox
Mid-360 LiDAR mounted on the robot’s head and process
its data using FastLIO2 [42, 43]. This LiDAR also provides
input for elevation map generation in baseline comparisons.

4.2. Simulation Experiments
4.2.1. Metrics
We evaluate ablated methods in IsaacSim [28] on the most
challenging terrain settings (pmax

τ ; Sec. 4.1), and the policy
performance is measured by two distinct metrics:
• Success rate Esucc: fraction of episodes that reach the

target within a 10s horizon without falling or incurring
any severe collisions with the obstacles.

• Collision momentum Ecollision: cumulative momen-
tum transferred through unnecessary contacts (all
robot–environment contacts excluding nominal foot con-
tacts), reflecting the policy’s ability to avoid collisions.

We train every policy for 4,000 iterations, then run 5 in-
dependent evaluations (each run evaluates over 1,000 com-
plete episodes), reporting mean ± standard deviation; poli-
cies with higher Esucc and lower Ecol are better.

4.2.2. Baselines
To assess the effectiveness of core components in Gallant,
we compare against the following ablations:
• Self-scan. We disable simulated LiDAR returns from dy-

namic geometry (e.g. the robot’s own links), but only
scans static terrain. This is compared to Gallant, which
models scans over both static terrain and moving links.

• Perceptual network. We replace the z-as-channel 2D
CNN with alternatives: standard 3D CNN, sparse 2D
CNN, and sparse 3D CNN (commonly used in LiDAR
perception [5, 12]). Sparse variants are based on [8].

• Perceptual representation. Gallant feeds a voxel grid to
the actor and a voxel grid plus a height map to the critic.
We test two baselines to isolate this: (i) only height map
for actor and critic; (ii) only voxel grid for actor and critic.

• Voxel resolution. We sweep the voxel size around the
default 5 cm (i.e., 2.5 cm and 10 cm) to examine the trade-
off between field of view coverage and geometric fidelity.

4.2.3. Result
Across eight representative terrains, Gallant attains superior
success rates relative to the baselines (see Tab. 3). Ablation-
specific analyses are summarized as follow:

LiDAR return from dynamic objects is necessary.
With all other settings fixed, Gallant achieves much higher

5

Table 3. Simulation ablation results. We present a success rate comparison between Gallant and baselines on the eight representative
terrains. The means and standard variation are reported across 5 evaluations, each with 1,000 testing episodes. Success rate is reported as
a percentage (e.g., 90 means 90%). For each ablation setting, the best-performing value per metric on each terrain is highlighted in bold.

Method Plane Ceiling Forest Door Platform Pile Upstair Downstair

Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓ Esucc ↑ Ecollision ↓
(a) Ablation on Self-scan
w/o-Self-Scan 99.7 (±0.1) 1.6 (±3.2) 28.4 (±2.4) 442.7 (±22.1) 78.1 (±1.4) 420.5 (±12.1) 98.3 (±0.7) 152.7 (±20.0) 22.16 (±1.2) 637.6 (±31.3) 27.2 (±1.0) 579.0 (±55.1) 33.0 (±0.9) 305.5 (±16.6) 96.6 (±0.4) 15.15 (±6.1)

Gallant 100.0 (±0.0) 0.0 (±0.0) 97.1 (±0.6) 24.6 (±6.3) 84.3 (±0.7) 311.1 (±25.9) 98.7 (±0.3) 27.7 (±6.4) 96.1 (±0.5) 30.1 (±5.3) 82.1 (±0.6) 113.1 (±14.6) 96.2 (±0.6) 27.0 (±4.9) 97.9 (±0.4) 15.6 (±6.2)

(b) Ablation on Perceptual Network
Sparse-3D-CNN 100.0 (±0.0) 0.0 (±0.0) 86.7 (±2.0) 143.5 (±46.1) 84.1 (±1.5) 277.8 (±22.1) 98.0 (±.06) 74.8 (±7.9) 88.8 (±1.5) 96.8 (±11.6) 52.4 (±1.5) 365.9 (±12.3) 80.1 (±2.2) 107.7 (±15.8) 97.5 (±0.4) 18.9 (±14.1)

3D-CNN 99.9 (±0.1) 0.0 (±0.0) 97.5 (±0.5) 20.0 (±6.6) 73.9 (±2.1) 379.0 (±70.2) 96.1 (±0.7) 69.58 (±5.8) 92.7 (±1.0) 65.6 (±9.5) 65.3 (±0.9) 275.4 (±31.5) 86.0 (±1.4) 78.1 (±19.2) 99.0 (±0.3) 12.1 (±11.6)

Sparse-2D-CNN 99.6 (±0.2) 0.7 (±1.4) 96.0 (±1.0) 26.17 (±5.1) 80.2 (±1.1) 363.1 (±14.4) 92.7 (±1.0) 199.6 (±120.2) 87.9 (±1.1) 100.5 (±20.3) 57.6 (±0.9) 360.3 (±16.3) 89.1 (±0.7) 52.9 (±4.8) 98.7 (±0.6) 4.55 (±2.92)

Gallant 100.0 (±0.0) 0.0 (±0.0) 97.1 (±0.6) 24.6 (±6.3) 84.3 (±0.7) 311.1 (±25.9) 98.7 (±0.3) 27.7 (±6.4) 96.1 (±0.5) 30.1 (±5.3) 82.1 (±0.6) 113.1 (±14.6) 96.2 (±0.6) 27.0 (±4.9) 97.9 (±0.4) 15.6 (±6.2)

(c) Ablation on Perceptual Interface
Only-Height-Map 100.0 (±0.0) 0.0 (±0.0) 5.3 (±2.0) 1995.3 (±68.3) 10.5 (±1.5) 577.4 (±18.1) 10.2 (±1.3) 717.5 (±33.8) 96.0 (±0.7) 34.3 (±2.8) 86.2 (±0.6) 101.6 (±13.8) 98.3 (±0.2) 11.6 (±6.2) 98.5 (±0.3) 11.2 (±6.7)

Only-Voxel-Grid 100.0 (±0.0) 0.0 (±0.0) 96.9 (±0.4) 22.4 (±4.2) 75.9 (±1.5) 506.0 (±20.6) 96.0 (±0.3) 281.4 (±29.0) 94.2 (±0.8) 51.0 (±10.2) 72.3 (±0.6) 201.8 (±14.9) 89.3 (±1.3) 46.9 (±10.5) 98.8 (±0.2) 7.0 (±3.9)

Gallant 100.0 (±0.0) 0.0 (±0.0) 97.1 (±0.6) 24.6 (±6.3) 84.3 (±0.7) 311.1 (±25.9) 98.7 (±0.3) 27.7 (±6.4) 96.1 (±0.5) 30.1 (±5.3) 82.1 (±0.6) 113.1 (±14.6) 96.2 (±0.6) 27.0 (±4.9) 97.9 (±0.4) 15.6 (±6.2)

(d) Ablation on Voxel Resolution
10CM 98.8 (±0.2) 2.1 (±1.6) 97.3 (±0.9) 24.2 (±11.0) 77.5 (±3.4) 368.0 (±36.3) 97.5 (±0.4) 260.4 (±38.8) 75.5 (±0.5) 63.0 (±4.9) 65.2 (±5.5) 256.3 (±50.0) 94.1 (±1.1) 38.6 (±6.7) 97.5 (±0.4) 13.5 (±2.0)

2.5CM 99.9 (±0.1) 2.1 (±1.6) 13.3 (±2.4) 1442.4 (±119.6) 59.0 (±1.7) 642.7 (±12.4) 64.8 (±1.1) 591.0 (±22.5) 67.2 (±2.7) 268.9 (±39.3) 54.1 (±1.7) 400.2 (±19.5) 86.3 (±1.2) 74.8 (±12.8) 96.6 (±0.4) 15.2 (±6.1)

Gallant (5CM) 100.0 (±0.0) 0.0 (±0.0) 97.1 (±0.6) 24.6 (±6.3) 84.3 (±0.7) 311.1 (±25.9) 98.7 (±0.3) 27.7 (±6.4) 96.1 (±0.5) 30.1 (±5.3) 82.1 (±0.6) 113.1 (±14.6) 96.2 (±0.6) 27.0 (±4.9) 97.9 (±0.4) 15.6 (±6.2)

a

b c

d e

f g

Figure 4. Humanoid robot traverses diverse 3D constrained terrains in both simulation and the real world. (a)Traversal across the eight
simulated training terrain types. (b)Ducking under suspended ceiling obstacles. (c)Local navigation through lateral clutters. (d)Stepping
onto a 30cm-high platform and crossing a 40cm gap. (e)Traversing pile-like stepping-stone terrain. (f)(g)Ascending and descending 20cm
stairs. All deployments are based on the same policy.

success rates than the variant that ignores dynamic objects
(w/o-Self-Scan) across all tasks. Using Ceiling as an exam-
ple in Fig. 5 (a), when the robot ducks under the ceiling,
the voxel grids with dynamics (Fig. 5 (b)) correctly include
the robot’s legs, which occupy voxels and induce occlusion
“holes” along LiDAR rays to the distant floor. In contrast,
excluding dynamics (Fig. 5 (c)) yields an artificially flat
floor. Because real LiDAR returns from all visible objects,
omitting dynamics makes the voxel grid out-of-distribution
(OOD) in postures where the body is not fully upright (e.g.,
Ceiling, Platform), causing a pronounced drop in success.

Hence, simulating dynamic objects in the LiDAR pipeline
is critical to final performance. z-grouped 2D CNN is the
most suitable choice. Although one variant marginally ex-
ceeds Gallant on a few terrains (e.g., a 3D CNN on Ceiling),
the gains are small and are outweighed by lower success
rates on most tasks. Our voxel input is a compact, egocen-
tric grid of 32×32×40, which changes with the torso frame.
As shown in Fig. 5 (d), sparse convolutions offer little ad-
vantage: occupancy is relatively dense in the x−y plane,
so few computations are actually skipped, while the rule-
book overhead of sparse kernels becomes a dominant cost

6

(d) Mean Training Iteration Time(a)Humanoid Crossing Ceiling (b)Voxel Grid w/ Self-scan (c)Voxel Grid w/o Self-scan

Robot’s Links No Scan

Figure 5. Visualization of simulation ablation analyses. (a) The humanoid crouches to traverse under a low ceiling; (b) Voxel grid from
LiDAR simulation that includes dynamic objects captures the robot’s own links; (c) LiDAR simulation restricted to static objects excludes
robot links from the voxel grid; (d) Mean training iteration time for Gallant with different CNN-based perception modules.

at this scale. On the other hand, full 3D CNNs introduce
substantially more parameters and memory traffic, making
optimization harder and less data-efficient when sparsity is
concentrated primarily along z. Treating z as channels with
a lightweight 2D CNN preserves vertical structure through
channel mixing, exploits highly optimized dense 2D opera-
tors, and provides the right inductive bias for an egocentric
raster that is approximately translation-equivariant in x−y
yet rotates with the body. In practice, this z-grouped 2D de-
sign delivers equal or better accuracy with markedly lower
compute, making it the most suitable choice for our task.

Combination of Voxel Grid and Height Map is bet-
ter. As discussed in Sec. 1, using only a height map as the
perceptual representation for policy cannot represent multi-
layer structure; consequently, Only-Height-Map fails on ter-
rains such as Ceiling. Nevertheless, in simulation (where
the height map incurs no latency), height-map–based meth-
ods perform strongly on ground obstacles, indicating that
the height map provides a useful, positively informative sig-
nal for training. For sim-to-real robustness, Gallant there-
fore omits the height map from the actor inputs, but in-
cludes it as part of the critic observation (privileged in-
formation). This asymmetric design leverages the height
map to shape values and improve credit assignment during
training while keeping the deployed policy free of latency-
sensitive channels. This Gallant configuration achieves
higher success rates than Only-Voxel-Grid (critic without
height map) across all tasks, validating the proposed design.

5cm is a suitable resolution for Gallant. PPO train-
ing benefits from large batches collected over many paral-
lel environments. Under a fixed VRAM budget, we there-
fore adjust the voxel-grid resolution to trade spatial preci-
sion for egocentric FoV. Empirically, the 10 cm grid under-
performs Gallant’s 5 cm setting: while it enlarges the FOV,
its coarse quantization impairs fine contact- and clearance-
sensitive interactions. Conversely, the 2.5 cm grid yields
an even lower success rate: despite its higher precision, the
reduced FOV hampers perception of long vertical extents,
making terrains that require sensing far below or above the
robot (e.g., Ceiling, Downstair) notably harder. Overall, the

5 cm resolution strikes an effective balance between cover-
age and detail under resource constraints.

4.3. Real-world Experiments

4.3.1. Deployment
We directly deploy the Gallant-trained policy onto the real
Unitree G1 humanoid without any fine-tuning. The control
loop runs at 50Hz, consistent with simulation. To ensure
reliable voxel input, raw point clouds from dual LiDARs are
processed onboard using OctoMap [16], generating a binary
occupancy grid at 10Hz. Importantly, OctoMap serves as
a lightweight preprocessing step—not a full reconstruction
pipeline like elevation maps—and thus incurs minimal la-
tency or computational load.

We evaluate the same policy across a variety of real-
world scenarios, including flat terrain, random-height ceil-
ings, lateral clutters (e.g., doors), high platforms with gaps,
stepping stones, and staircases. Despite the diverse and
complex constraints, the robot consistently traverses these
terrains with high success rates (see Fig. 6). Qualitative re-
sults are shown in Fig. 4. The policy exhibits versatile capa-
bilities: it crouches under ceilings of varying heights, plans
lateral motions to pass through narrow doorways, steps ro-
bustly onto high platforms, crosses gaps between them, and
carefully places its feet to negotiate stepping-stone–like ter-
rains. On stairs, it demonstrates stable multi-step climbing
and descent without loss of balance. These results highlight
Gallant’s ability to encode spatial constraints from percep-
tion and translate them into robust, real-time whole-body
behaviors. Furthermore, all behaviors arise from a single
policy without any terrain-specific tuning, highlighting Gal-
lant’s generality and real-world transferability.

4.3.2. Ablation
To evaluate sim-to-real performance, we deploy three poli-
cies on the 29-DoF Unitree G1 and compare success rates
across terrains: (i) HeightMap, which replaces the voxel
grid with an elevation map estimated from Livox Mid360;
(ii) NoDR, trained without the LiDAR domain randomiza-
tion described in Sec. 3.2, but otherwise identical to Gallant;

7

Plane Ceiling Door Platform Pile Upstair Downstair
0.0

2.5

5.0

7.5

10.0

12.5

15.0
15.0

0.0
1.0

11.0
10.0

13.0
12.0

15.0 15.0

12.0

4.0

9.0

6.0

8.0

15.0 15.0 15.0
14.0

12.0

15.0
14.0

Success Times over 15 Trials [-]

HeightMap
NoDR
Gallant

Figure 6. Real-world traversal success times over 15 trials. Height Map uses elevation maps as perceptual representation; NoDR is
Gallant without LiDAR domain randomization; Gallant denotes the full proposed pipeline. All methods are tested for 15 trials per terrain.

and (iii) Gallant, our full pipeline. Each policy is tested over
15 trials per terrain, with results shown in Fig. 6.

Gallant consistently outperforms both baselines across
all real-world terrains. The HeightMap baseline fails on
overheading (e.g., Ceiling) and lateral (e.g., Door) obsta-
cles due to its limited 2.5D representation, and performs
worse than Gallant even on ground-level terrains. Unlike in
simulation, where HeightMap occasionally excels on Pile
or Stairs, its real-world performance is hindered by noisy
elevation reconstruction. Moreover, our policy allows torso
pitch/roll for more expressive motion, but this introduces
LiDAR jitter at the mounting point, further degrading ele-
vation map quality—reinforcing the benefit of voxel grids.
The NoDR variant performs reasonably well on Ceiling
and Door, suggesting low sensitivity to sensing latency in
these cases. However, its performance drops significantly
on ground-level terrains. Without modeling LiDAR delay
and noise in training, the robot misjudges its position rela-
tive to obstacles, often reacting too late. This emphasizes
the critical role of domain randomization in bridging the
sim-to-real gap.

4.4. Further Analyses

Ceiling Door Platform Pile Upstair Downstair
80

85

90

95

100

Su
cc

es
s

Ra
te

 [
%

]

97.1
98.7

96.1

82.1

96.2
97.9

100.0 100.0

93.3

80.0

100.0

93.3

Sim
Real

Figure 7. Gallant success rate in simulation and real world.

We analyze Gallant’s success rates across terrains evalu-
ated in both simulation and the real world (Fig. 7). A clear
correlation emerges: terrains with higher success in sim-
ulation also perform well on hardware, validating the use
of large-scale simulated evaluation as a reliable predictor

of real-world performance. With the introduction of voxel
grids, scenarios like overheading (e.g., Ceiling) and lat-
eral (e.g., Door) constraints—previously difficult for height
map-based methods—become the easiest considering the
high success rate, demonstrating voxel grids as a simple yet
effective representation for full-space perception.

Gallant’s main limitation appears on the Pile terrain,
where accurate foothold selection is critical. Success rates
plateau around 80%, and simulation with zero LiDAR
latency improves this to over 90%, indicating that real-
world sensor delay is a key bottleneck. On other ter-
rains—especially Platforms and Stairs, previously consid-
ered unstable due to collision risk [21]—Gallant achieves
high success by proactively adjusting foot trajectories.

5. Conclusion
We present Gallant, a full-stack pipeline for humanoid lo-
comotion and local navigation in 3D-constrained environ-
ments. It leverages voxel grids as a lightweight, geometry-
preserving perceptual representation, combined with real-
istic LiDAR simulation and a z-grouped 2D CNN for effi-
cient processing. Simulation ablations show that Gallant’s
key components are essential for training high–success-rate
policies. In real-world tests, a single LiDAR policy cov-
ers the ground obstacles handled by elevation-map con-
trollers while also tackling lateral and overhead structures,
and on ground-only terrains it reaches near-100% success
with fewer collisions. All these results together establish
Gallant as a solid pipeline for humanoid locomotion and lo-
cal navigation across 3D-constrained terrains.

Limitations. Despite its success, Gallant does not yet
achieve a 100% success rate. The primary bottleneck lies
in LiDAR latency: operating at 10 Hz, each scan incurs
over 100 ms delay due to light reflection and communica-
tion overhead. This delay limits the robot’s ability to act
preemptively. Future work will explore using Gallant as a
geometry-aware teacher while investigating lower-latency
sensors to enable a fully reactive policy that achieves near-
perfect performance across all terrains.

8

References
[1] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and

Deepak Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on robot learning,
pages 403–415. PMLR, 2023. 3

[2] Arthur Allshire, Hongsuk Choi, Junyi Zhang, David McAl-
lister, Anthony Zhang, Chung Min Kim, Trevor Darrell,
Pieter Abbeel, Jitendra Malik, and Angjoo Kanazawa. Vi-
sual imitation enables contextual humanoid control. arXiv
preprint arXiv:2505.03729, 2025. 2

[3] Qingwei Ben, Feiyu Jia, Jia Zeng, Junting Dong, Dahua
Lin, and Jiangmiao Pang. Homie: Humanoid loco-
manipulation with isomorphic exoskeleton cockpit. arXiv
preprint arXiv:2502.13013, 2025. 3, 2

[4] Wenzhe Cai, Jiaqi Peng, Yuqiang Yang, Yujian Zhang, Meng
Wei, Hanqing Wang, Yilun Chen, Tai Wang, and Jiangmiao
Pang. Navdp: Learning sim-to-real navigation diffusion pol-
icy with privileged information guidance. arXiv preprint
arXiv:2505.08712, 2025. 3

[5] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and
Jiaya Jia. Voxelnext: Fully sparse voxelnet for 3d object de-
tection and tracking. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
21674–21683, 2023. 5

[6] An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Zaitian
Gongye, Xueyan Zou, Jan Kautz, Erdem Bıyık, Hongxu
Yin, Sifei Liu, and Xiaolong Wang. Navila: Legged robot
vision-language-action model for navigation. arXiv preprint
arXiv:2412.04453, 2024. 3

[7] Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak
Pathak. Extreme parkour with legged robots. In 2024
IEEE International Conference on Robotics and Automation
(ICRA), pages 11443–11450. IEEE, 2024. 3

[8] Spconv Contributors. Spconv: Spatially sparse convolu-
tion library. https://github.com/traveller59/
spconv, 2022. 5

[9] Wei Cui, Haoyu Wang, Wenkang Qin, Yijie Guo, Gang Han,
Wen Zhao, Jiahang Cao, Zhang Zhang, Jiaru Zhong, Jingkai
Sun, et al. Humanoid occupancy: Enabling a general-
ized multimodal occupancy perception system on humanoid
robots. arXiv preprint arXiv:2507.20217, 2025. 3

[10] Péter Fankhauser, Michael Bloesch, Christian Gehring,
Marco Hutter, and Roland Siegwart. Robot-centric elevation
mapping with uncertainty estimates. In International Con-
ference on Climbing and Walking Robots (CLAWAR), 2014.
2

[11] Péter Fankhauser, Michael Bloesch, and Marco Hutter. Prob-
abilistic terrain mapping for mobile robots with uncertain lo-
calization. IEEE Robotics and Automation Letters (RA-L), 3
(4):3019–3026, 2018. 2

[12] Jonas Frey, David Hoeller, Shehryar Khattak, and Marco
Hutter. Locomotion policy guided traversability learning
using volumetric representations of complex environments.
In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5722–5729. IEEE, 2022.
2, 3, 5

[13] Junzhe He, Chong Zhang, Fabian Jenelten, Ruben Grandia,
Moritz Bächer, and Marco Hutter. Attention-based map en-
coding for learning generalized legged locomotion. Science
Robotics, 10(105):eadv3604, 2025. 2

[14] Tairan He, Chong Zhang, Wenli Xiao, Guanqi He,
Changliu Liu, and Guanya Shi. Agile but safe: Learning
collision-free high-speed legged locomotion. arXiv preprint
arXiv:2401.17583, 2024. 3

[15] David Hoeller, Nikita Rudin, Dhionis Sako, and Marco
Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024.
3

[16] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees. Au-
tonomous Robots, 2013. Software available at https:
//octomap.github.io. 7, 1

[17] Physical Intelligence, Kevin Black, Noah Brown, James
Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0. 5:
a vision-language-action model with open-world generaliza-
tion, 2025. URL https://arxiv. org/abs/2504.16054, 1(2):3.
2

[18] Songbo Li, Shixin Luo, Jun Wu, and Qiuguo Zhu. Move:
Multi-skill omnidirectional legged locomotion with limited
view in 3d environments. In 2025 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 7647–
7653. IEEE, 2025. 3

[19] Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet,
Koushil Sreenath, and C Karen Liu. Beyondmimic: From
motion tracking to versatile humanoid control via guided dif-
fusion. arXiv preprint arXiv:2508.08241, 2025. 3

[20] Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Ri-
Zhao Qiu, Ruihan Yang, and Xiaolong Wang. Visual whole-
body control for legged loco-manipulation. arXiv preprint
arXiv:2403.16967, 2024. 3

[21] Junfeng Long, Junli Ren, Moji Shi, Zirui Wang, Tao Huang,
Ping Luo, and Jiangmiao Pang. Learning humanoid loco-
motion with perceptive internal model. In 2025 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 9997–10003. IEEE, 2025. 2, 8

[22] Antonio Loquercio, Ashish Kumar, and Jitendra Malik.
Learning visual locomotion with cross-modal supervision. In
IEEE International Conference on Robotics and Automation
(ICRA), pages 7295–7302. IEEE, 2023. 3

[23] Zhengyi Luo, Ye Yuan, Tingwu Wang, Chenran Li, Sirui
Chen, Fernando Castañeda, Zi-Ang Cao, Jiefeng Li, David
Minor, Qingwei Ben, et al. Sonic: Supersizing motion track-
ing for natural humanoid whole-body control. arXiv preprint
arXiv:2511.07820, 2025. 2

[24] Miles Macklin. Warp: A high-performance python frame-
work for gpu simulation and graphics. https://
github.com/nvidia/warp, 2022. NVIDIA GPU
Technology Conference (GTC). 3

[25] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 922–928. Ieee, 2015. 2

9

https://github.com/traveller59/spconv
https://github.com/traveller59/spconv
https://octomap.github.io
https://octomap.github.io
https://github.com/nvidia/warp
https://github.com/nvidia/warp

[26] Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian
Jenelten, Timon Homberger, and Marco Hutter. Elevation
mapping for locomotion and navigation using gpu. In 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2273–2280. IEEE, 2022. 2

[27] Shun Niijima, Ryoichi Tsuzaki, Noriaki Takasugi, and
Masaya Kinoshita. Real-time multi-plane segmenta-
tion based on gpu accelerated high-resolution 3d voxel
mapping for legged robot locomotion. arXiv preprint
arXiv:2510.01592, 2025. 3

[28] NVIDIA. Isaac Sim. 5
[29] Ri-Zhao Qiu, Yuchen Song, Xuanbin Peng, Sai Aneesh

Suryadevara, Ge Yang, Minghuan Liu, Mazeyu Ji, Chengzhe
Jia, Ruihan Yang, Xueyan Zou, et al. Wildlma: Long hori-
zon loco-manipulation in the wild. In 2025 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 10011–10019. IEEE, 2025. 3

[30] Junli Ren, Tao Huang, Huayi Wang, Zirui Wang, Qing-
wei Ben, Junfeng Long, Yanchao Yang, Jiangmiao Pang,
and Ping Luo. Vb-com: Learning vision-blind composite
humanoid locomotion against deficient perception. arXiv
preprint arXiv:2502.14814, 2025. 2, 3

[31] Nikita Rudin, David Hoeller, Marko Bjelonic, and Marco
Hutter. Advanced skills by learning locomotion and lo-
cal navigation end-to-end. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
2497–2503. IEEE, 2022. 2, 3

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 3

[33] Hao Shi, Ze Wang, Shangwei Guo, Mengfei Duan, Song
Wang, Teng Chen, Kailun Yang, Lin Wang, and Kaiwei
Wang. Oneocc: Semantic occupancy prediction for legged
robots with a single panoramic camera. arXiv preprint
arXiv:2511.03571, 2025. 3

[34] Jingkai Sun, Gang Han, Pihai Sun, Wen Zhao, Jiahang Cao,
Jiaxu Wang, Yijie Guo, and Qiang Zhang. Dpl: Depth-only
perceptive humanoid locomotion via realistic depth synthe-
sis and cross-attention terrain reconstruction. arXiv preprint
arXiv:2510.07152, 2025. 2, 3

[35] Wandong Sun, Baoshi Cao, Long Chen, Yongbo Su, Yang
Liu, Zongwu Xie, and Hong Liu. Learning perceptive hu-
manoid locomotion over challenging terrain. arXiv preprint
arXiv:2503.00692, 2025. 2

[36] Generalist AI Team. Gen-0: Embodied foundation mod-
els that scale with physical interaction. Generalist AI Blog,
2025. https://generalistai.com/blog/preview-uqlxvb-bb.html.
2

[37] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with
3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 2

[38] Huayi Wang, Zirui Wang, Junli Ren, Qingwei Ben, Tao
Huang, Weinan Zhang, and Jiangmiao Pang. Beamdojo:
Learning agile humanoid locomotion on sparse footholds.
arXiv preprint arXiv:2502.10363, 2025. 2, 5

[39] Zifan Wang, Teli Ma, Yufei Jia, Xun Yang, Jiaming
Zhou, Wenlong Ouyang, Qiang Zhang, and Junwei Liang.
Omni-perception: Omnidirectional collision avoidance for
legged locomotion in dynamic environments. arXiv preprint
arXiv:2505.19214, 2025. 2, 3

[40] Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang
Yang, Xiaohan Mao, Chenming Zhu, Wenzhe Cai, Hanqing
Wang, Yilun Chen, et al. Streamvln: Streaming vision-and-
language navigation via slowfast context modeling. arXiv
preprint arXiv:2507.05240, 2025. 3

[41] Botian Xu, Haoyang Weng, Qingzhou Lu, Yang Gao, and
Huazhe Xu. Facet: Force-adaptive control via impedance
reference tracking for legged robots. arXiv preprint
arXiv:2505.06883, 2025. 1

[42] Wei Xu and Fu Zhang. Fast-lio: A fast, robust lidar-inertial
odometry package by tightly-coupled iterated kalman fil-
ter. IEEE Robotics and Automation Letters, 6(2):3317–3324,
2021. 5

[43] Wei Xu, Yixi Cai, Dongjiao He, Jiarong Lin, and Fu Zhang.
Fast-lio2: Fast direct lidar-inertial odometry. IEEE Transac-
tions on Robotics, 38(4):2053–2073, 2022. 5

[44] Ruihan Yang, Minghao Zhang, Nicklas Hansen, Huazhe Xu,
and Xiaolong Wang. Learning vision-guided quadrupedal
locomotion end-to-end with cross-modal transformers. arXiv
preprint arXiv:2107.03996, 2021. 3

[45] Naoki Yokoyama, Alex Clegg, Joanne Truong, Eric Under-
sander, Tsung-Yen Yang, Sergio Arnaud, Sehoon Ha, Dhruv
Batra, and Akshara Rai. Asc: Adaptive skill coordination for
robotic mobile manipulation. IEEE Robotics and Automa-
tion Letters, 9(1):779–786, 2023. 3

[46] Chong Zhang, Jin Jin, Jonas Frey, Nikita Rudin, Matı́as Mat-
tamala, Cesar Cadena, and Marco Hutter. Resilient legged
local navigation: Learning to traverse with compromised
perception end-to-end. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 34–41.
IEEE, 2024. 3

[47] Qiang Zhang, Zhang Zhang, Wei Cui, Jingkai Sun, Jiahang
Cao, Yijie Guo, Gang Han, Wen Zhao, Jiaxu Wang, Cheng-
hao Sun, et al. Humanoidpano: Hybrid spherical panoramic-
lidar cross-modal perception for humanoid robots. arXiv
preprint arXiv:2503.09010, 2025. 3

[48] Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atke-
son, Soeren Schwertfeger, Chelsea Finn, and Hang Zhao.
Robot parkour learning. arXiv preprint arXiv:2309.05665,
2023. 3

[49] Ziwen Zhuang, Shenzhe Yao, and Hang Zhao. Humanoid
parkour learning. arXiv preprint arXiv:2406.10759, 2024. 2,
3

10

Gallant: Voxel Grid-based Humanoid Locomotion and
Local-navigation across 3D Constrained Terrains

Supplementary Material

1. Real-world deployment Details

JT128 PC
Process

10Hz
Raw PC OctoMap10Hz

PC

Policy

10HzVoxel Grid

PD
ControlRobot

50Hz
Action

Proprioceptive
50Hz

Proprioceptive
200Hz

200Hz
𝑞!"#$%!

Mid360 FastLio225Hz
PC2

25Hz𝑃!

Figure 8. Diagram of information communication.

Target Position Command We use a Unitree G1 robot
equipped with a Livox Mid360 LiDAR mounted on its head
to run FastLIO2. The Mid360 is installed in a downward-
facing orientation and provides a field of view of 360° hor-
izontally and from −7◦ to 52◦ vertically. The system pro-
vides the robot’s position in the world coordinate frame at a
frequency of 25 Hz. To match this in simulation, the obser-
vation frequency of Pt during training is also set to 25 Hz.
To align with our training setup, we initialize the robot’s
starting position at (0, 0) and set the goal position for each
run to (4, 0). At each time step, FastLIO2 outputs the cur-
rent position of the robot (x, y), and the observation relative
to the goal is defined as: Pt = (4, 0)−(x, y) = (4−x,−y).

Voxel Grid Processing We use two Hesai JT128 LiDARs
mounted at the front and rear of the robot to collect raw
point cloud data, which are merged and used for voxel grid
construction. The JT128 supports 10 Hz and 20 Hz out-
put modes; empirical testing showed that 20 Hz leads to
lower point cloud quality and reduced policy success rates.
Therefore, we adopt the more reliable 10 Hz mode and align
the simulation accordingly. Each JT128 provides a verti-
cal field of view of approximately 95°, a full 360° horizon-
tal view, and 128 channels. The dual-sensor setup ensures
near-complete coverage around the robot. To improve voxel
grid quality, the raw point clouds are processed with the Oc-
tomap [16] before being passed to the policy. In practice,
using Octomap consistently leads to better performance.

Information Communication Our system is fully de-
ployed on a Unitree G1 robot using only an NVIDIA Orin

NX, which has limited communication performance. When
using TCP to transmit LiDAR data and LCM for internal
robot state sharing, we observed a delay of approximately
200 ms in proprioceptive data transmission, which is unac-
ceptable. Thus, we made the following adjustments:
• LiDAR output is clipped to include only points within the

voxel grid used for perception, reducing data size.
• The voxel grid from Octomap and that used for observa-

tion share memory to avoid redundant transmission.
• Robot state reading and action command delivery are also

implemented via shared memory, bypassing LCM.
These optimizations eliminate nearly all communication

induced latency, except for inherent sensor delays. Overall
information communication process is shown in Fig. 8.

2. Training Details
Hyperparameter Our training framework is derived
from [41], and below is a summary of key PPO hyperpa-
rameters used in the training process:

Hyperparameter Value

Environment number 1024× 8
Steps per iteration PPO epochs 4
Minibatches 8
Clip range 0.2
Entropy coefficient 0.003
GAE factor λ 0.95
Discount factor γ 0.99
Learning rate 5e−4

Table 4. Hyperparameters and their values.

Policy Network Structure The Actor and Critic in our
policy share the same network structure but maintain sepa-
rate parameters. The shared architecture is illustrated in the
block diagram below. To be specific, a two-layer MLP with
hidden dimensions of 256 is used to encode non-voxel in-
formation (e.g., proprioceptive input). Note that the Critic
additionally receives privileged observations, resulting in a
slightly higher input dimension. This produces an interme-
diate feature hmlp. In parallel, a three-layer 2D CNN pro-
cesses the voxel grid input, producing a feature vector hcnn.
The two features are concatenated and passed through an-
other MLP to produce a 256-dimensional latent representa-
tion. This latent vector is then fed into a final MLP:
• The Actor outputs an action vector of dimension 29.
• The Critic outputs a scalar value estimate.

1

We use the Mish activation function throughout all layers.

MLP: h
(1)
mlp = Mish

(
LN(Wmlp,1xmlp + bmlp,1)

)
hmlp = Wmlp,2h

(1)
mlp + bmlp,2, dim(hmlp) = 256

CNN: z1 = Mish
(
Conv(xcnn;C=8, k=3, s=2, p=1)

)
z2 = Mish

(
Conv(z1;C=8, k=3, s=2, p=1)

)
z3 = Mish

(
Conv(z2;C=8, k=3, s=2, p=1)

)
hflat

cnn = Flatten(z3)

h(1)
cnn = Mish

(
LN(Wcnn,1h

flat
cnn + bcnn,1)

)
hcnn = Wcnn,2h

(1)
cnn + bcnn,2, dim(hcnn) = 64

Fusion: f = [hmlp, hcnn]

h
(1)
out = Mish(f)

hout = Mish
(
Wouth

(1)
out + bout

)
, dim(hout) = 256

Observation The composition of the observation is de-
tailed in Sec. 3, and the dimensionality of each observa-
tion component at a single time step t is summarized in
Tab. 5. The dimension of Height Mapt shown in Tab. 5
corresponds to its flattened form. Before flattening, it is
represented as a 33× 33 tensor. Specifically, this map cap-
tures the local terrain height around the robot, centered at
its base, over a rectangular area with x ∈ [−0.8, 0.8]m and
y ∈ [−0.8, 0.8]m. A resolution of 0.05m is used along both
axes, resulting in one height (z) sample per (x, y) grid point.
This resolution is consistent with that used in the voxel grid.
Instead of applying fixed scaling, the observations are pro-
cessed using a trainable vecnorm module before being fed
into the policy. Vecnorm is applied in both training and de-
ployment.

Observation Term Dimension

Pt 4
Telapse,t 1
Tleft,t 1
at 29
ωt 3
gt 3
qt 29
q̇t 29
V oxel Gridt [32× 32× 40]
vt 3
Height Mapt 1089

Table 5. Observation terms and their dimensions.

Reward Most reward components used in Gallant follow
Ben et al. [3], with necessary modifications to support our

target-based formulation. In addition to the sparse target-
reaching reward rreach introduced in Sec. 3, we incorporate
auxiliary shaping terms to improve sample efficiency during
early training, as suggested by Rudin et al. [31].

We design the following three general-purpose rewards
to encourage effective behavior across a variety of terrain
conditions:
• Directional velocity reward:

rvelocity direction =
a(p,g) · vt

∥a(p,g) · vt∥2
,

where vt is the robot’s instantaneous velocity and a(p,g)
is a direction vector incorporating both goal alignment
and obstacle avoidance. It is computed as:

a(p,g) =
∑

j∈N (p,r)

wj ur,j + κ
∑

j∈N (p,r)

wj γj tj ,

where N (p, r) denotes obstacle points within radius r =
1m from the robot position p; ur,j is the repulsion unit
vector from obstacle j to the robot; tj is a tangential unit
vector (left/right) around obstacle j;

wj =

[
max

(
1− max(dj−0.2, 0.02)

0.8 , 0
)]2

max(dj − 0.2, 0.02)

is a distance-based weighting factor, and γj =
max(g⊤dj , 0) filters obstacles behind the goal direction.
We set κ = 0.8 to weight the tangential term. This di-
rection computation is only applied to relevant structures
such as cylinders in Forest and walls in Door, and is effi-
ciently parallelized via warp.

• Head height reward:

rhead height = exp
(
− 4(Hhead est −Hhead)

2
)
,

where Hhead est is computed by shifting the robot 0.45 m
forward along the direction to the goal, averaging the ter-
rain height within a 0.5× 0.5m square, and subtracting a
0.1 m offset. This reward encourages the robot to proac-
tively lower its head to pass under overhead obstacles like
ceilings.

• Foot clearance reward:

rfeet clearance = exp
(
− 4(Hfeet est −Hfeet)

2
)
,

where Hfeet est is calculated similarly by querying terrain
0.5 m ahead of each foot and averaging the height in a
square region. Unlike Ben et al. [3], who use terrain
height directly under the foot, our design promotes proac-
tive leg lifting over steps or platforms.
All three rewards are geometry-aware and general-

purpose. They are computed consistently across all terrains
without task-specific tuning and significantly improve the
robot’s ability to traverse diverse obstacle configurations.

2

Collide

Miss Step
Lose Balance

Collide
Miss Step

Figure 9. Failure Mode of policy trained by Gallant without LiDAR-related domain randomization.

Domain Randomization In addition to the LiDAR-
specific domain randomization described in Sec. 3.2, we ap-
ply several general randomization strategies during training
to improve policy robustness:

• Mass randomization: The masses of the pelvis and torso
links are randomized as mrand = m×U(0.8, 1.2), where
U denotes a uniform distribution.

• Foot-ground contact randomization: While the ground
friction coefficient is fixed at 1.0, the foot joint friction is
sampled from U(0.5, 2.0), and the restitution coefficient
from U(0.05, 0.4).

• Control parameter randomization: The joint stiffness
and damping parameters are randomized as Kp,rand =
Kp × U(0.8, 1.2),Kd,rand = Kd × U(0.8, 1.2), where
Kp and Kd follow the settings in Liao et al. [19].

• Torso center-of-mass offset: The center of mass posi-
tion of the torso is perturbed by an offset sampled from
U(−0.05, 0.05) along each axis.

• Init Joint Position offset: A random offset sampled from
U(−0.1, 0.1) is also added to the robot’s default joint po-
sitions and default joint velocities (0 rad/s). This pertur-
bation is applied during environment reset to randomize
the robot’s initial state.

Termination We apply several termination conditions
during training to encourage effective and safe behavior:

• Force contact: If any external force acting on the torso,
hip, or knee joints exceeds 100 N at any timestep, the
episode is terminated.

• Pillar fall: For pillar-based terrains, if a foot penetrates
more than 10 cm below the ground level, the episode is
terminated to prevent the robot from bypassing the obsta-
cle by jumping off.

• No movement: To prevent the agent from exploiting re-
ward shaping by staying on intermediate platforms, the
episode is terminated if the robot fails to move at least
1 m away from its initial position within 4 seconds.

• Fall over: The episode terminates when the robot loses
balance and falls.

• Feet too close: Since self-collision is disabled during
training to speed up simulation, this condition prevents
the robot’s feet from crossing or overlapping unnaturally.

Symmetry Following Ben et al. [3], we apply symmetry-
based data augmentation to accelerate training. In addi-
tion to flipping the proprioceptive observations as in their
method, we also apply a flip along the y-axis to the percep-
tion representation. Specifically, the (32, 32, 40) grid map
is mirrored along the y dimension to align with the flipped
proprioceptive input, forming a consistent flipped observa-
tion. The reward remains unchanged under the transforma-
tion. Both original and flipped samples are stored together
in the rollout buffer and jointly used during training.

3. Failure Mode
In Fig. 9, we illustrate typical failure cases of the NoDR
variant (Gallant without domain randomization), as dis-
cussed in Sec. 4.3.2. These failures fall into three main
categories as listed below:
• Latency-induced collision: Due to sensor latency, the

robot perceives a voxel grid that reflects the environment
state from 100–200 ms earlier. Since the policy is trained
in simulation with instantaneous observations, it fails to
react proactively and collides with obstacles it believes to
be farther away.

• Missed gap detection: The robot occasionally fails to
detect gaps in time, resulting in missed steps. This issue
is particularly pronounced in scenarios like the Platform
task, where long-range gap perception is essential, lead-
ing to a lower success rate for NoDR.

• Poor state estimation: The robot exhibits imprecise es-
timation of its own body state. While it may avoid col-
lisions or missed steps on stairs, it still enters unstable
configurations and loses balance.
These observations highlight the importance of domain

randomization, especially in simulating LiDAR latency and
noise. Without such randomization, the policy fails to gen-
eralize effectively to real-world deployments.

3

	Introduction
	Related Work
	Method
	Problem Formulation
	Efficient LiDAR Simulation
	Voxel Representation and 2D CNN Perception
	Terrain Design

	Experiments
	Experimental Configuration
	Simulation Experiments
	Metrics
	Baselines
	Result

	Real-world Experiments
	Deployment
	Ablation

	Further Analyses

	Conclusion
	Real-world deployment Details
	Training Details
	Failure Mode

